Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 43(2): 168-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212382

RESUMO

Coenzyme Q (CoQ) is essential for mitochondrial respiration and required for thermogenic activity in brown adipose tissues (BAT). CoQ deficiency leads to a wide range of pathological manifestations, but mechanistic consequences of CoQ deficiency in specific tissues, such as BAT, remain poorly understood. Here, we show that pharmacological or genetic CoQ deficiency in BAT leads to stress signals causing accumulation of cytosolic mitochondrial RNAs and activation of the eIF2α kinase PKR, resulting in activation of the integrated stress response (ISR) with suppression of UCP1 but induction of FGF21 expression. Strikingly, despite diminished UCP1 levels, BAT CoQ deficiency displays increased whole-body metabolic rates at room temperature and thermoneutrality resulting in decreased weight gain on high-fat diets (HFD). In line with enhanced metabolic rates, BAT and inguinal white adipose tissue (iWAT) interorgan crosstalk caused increased browning of iWAT in BAT-specific CoQ deficient animals. This mitohormesis-like effect depends on the ATF4-FGF21 axis and BAT-secreted FGF21, revealing an unexpected role for CoQ in the modulation of whole-body energy expenditure with wide-ranging implications for primary and secondary CoQ deficiencies.


Assuntos
Tecido Adiposo Marrom , Ataxia , Fatores de Crescimento de Fibroblastos , Doenças Mitocondriais , Debilidade Muscular , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ubiquinona/metabolismo , Ubiquinona/farmacologia , Doenças Mitocondriais/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL
2.
EMBO J ; 41(22): e111952, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314651

RESUMO

Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.


Assuntos
Envelhecimento , Encéfalo , Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box , Animais , Camundongos , Envelhecimento/genética , Encéfalo/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/genética , Proteômica , Transdução de Sinais/fisiologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
4.
Nat Metab ; 2(11): 1265-1283, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33199924

RESUMO

Declining tissue nicotinamide adenine dinucleotide (NAD) levels are linked to ageing and its associated diseases. However, the mechanism for this decline is unclear. Here, we show that pro-inflammatory M1-like macrophages, but not naive or M2 macrophages, accumulate in metabolic tissues, including visceral white adipose tissue and liver, during ageing and acute responses to inflammation. These M1-like macrophages express high levels of the NAD-consuming enzyme CD38 and have enhanced CD38-dependent NADase activity, thereby reducing tissue NAD levels. We also find that senescent cells progressively accumulate in visceral white adipose tissue and liver during ageing and that inflammatory cytokines secreted by senescent cells (the senescence-associated secretory phenotype, SASP) induce macrophages to proliferate and express CD38. These results uncover a new causal link among resident tissue macrophages, cellular senescence and tissue NAD decline during ageing and offer novel therapeutic opportunities to maintain NAD levels during ageing.


Assuntos
ADP-Ribosil Ciclase 1/genética , Envelhecimento/metabolismo , Senescência Celular , Ativação de Macrófagos , Glicoproteínas de Membrana/genética , NAD/metabolismo , ADP-Ribosil Ciclase/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antígenos CD/metabolismo , Citocinas/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glicólise/genética , Humanos , Fígado/metabolismo , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD+ Nucleosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...